منابع مشابه
Strange Metals in One Spatial Dimension
We consider 1 + 1 dimensional SU(N) gauge theory coupled to a multiplet of massive Dirac fermions transforming in the adjoint representation of the gauge group. The only global symmetry of this theory is a U(1) associated with the conserved Dirac fermion number, and we study the theory at variable, non-zero densities. The high density limit is characterized by a deconfined Fermi surface state w...
متن کاملSubgame Perfect Implementation With Almost Perfect Information
The theory of incomplete contracts has been recently questioned using or extending the subgame perfect implementation approach of Moore and Repullo (1988). We consider the robustness of this mechanism to the introduction of small amounts of asymmetric information. Our main result is that the mechanism may not yield (even approximately) truthful revelation as the amount of asymmetric information...
متن کاملSimulations of transport in one dimension
Advection-dispersion equation is solved in numerically by using combinations of differential quadrature method (DQM) and various time integration techniques covering some explicit or implicit single and multi step methods. Two different initial boundary value problems modeling conservative and nonconservative transports of some substance represented by initial data are chosen as test problems. ...
متن کاملHow Good is Almost Perfect?
Heuristic search using algorithms such as A and IDA is the prevalent method for obtaining optimal sequential solutions for classical planning tasks. Theoretical analyses of these classical search algorithms, such as the well-known results of Pohl, Gaschnig and Pearl, suggest that such heuristic search algorithms can obtain better than exponential scaling behaviour, provided that the heuristics ...
متن کاملFinding Almost-Perfect Graph Bisections
We give a polynomial time algorithm that given a graph which admits a bisection cutting a fraction (1 − ε) of edges, finds a bisection cutting a (1 − g(ε)) fraction of edges where g(ε) → 0 as ε→ 0. One can take g(ε) = O( 3 √ ε log(1/ε)). Previously known algorithms for Max Bisection could only guarantee finding a bisection that cuts a fraction of edges bounded away from 1 (in fact less than 3/4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2020
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.124.136801